UM SISTEMA COMPUTACIONAL PARA CÁLCULOS DE pH E SIMULAÇÃO DE CURVAS DE TITULAÇÃO ÁCIDO-BASE

Eucler B. Paniago^a; Frederico Ferreira Campos, filho^b; Sandra Carvalho^c; Bráulio Roberto G. M. Couto^d
Departamento de Química^{a,c}; Departamento de Ciência da Computação^b; Bolsista de Iniciação Científica do CNPq^d; Instituto de Ciências Exatas da UFMG (Caixa Postal 702 – 30.161 Belo Horizonte, MG).

Recebido em 29/05/90

The text describes an iterative method to calculate the pH of aqueous solutions of acids, bases or salts, using a generic procedure which can be easily implemented. Employing this method to calculate pH, a routine to simulate titration curves of these solutions by either strong acids or bases is also described. Finally, the text describes the implementation of the method by means of a computer program, written in PASCAL language, to be run in an IBM compatible microcomputer.

1. INTRODUÇÃO

Calcular o pH de solução aquosa de ácidos ou de bases fracos ou, especialmente, de misturas destes, nem sempre é tarefa trivial. A utilização para isto de métodos computacionais pode representar uma solução adequada. Por outro lado, considerando-se a atual disponibilidade de microcomputadores, a sua utilização no ensino e pesquisa na área de química é viável e deve ser estimulada.

Para o cálculo do pH de uma solução aquosa, é conveniente, de início, adotar-se uma abordagem do equilíbrio químico que permita uma generalização da metodologia de cálculo, a fim de simplificar o trabalho a ser realizado. Para isso, partiu-se da definição de ácidos e bases de Brönsted-Löwry, utilizando então, para cada par ácido-base conjugado, apenas a constante de formação do respectivo ácido. O pH da solução é calculado a partir das concentrações analíticas totais de ácido e de base presentes na solução.

Definida a metodologia de cálculo do pH das soluções aquosas, foi desenvolvido um sistema computacional, o TI-TULAR, o qual permite calcular o pH de uma solução de ácido ou base, fortes ou fracos, ou ainda de uma mistura destes. O programa TITULAR permite ainda simular a curva de titulação da respectiva solução por um ácido ou base forte.

O programa TITULAR foi escrito na linguagem PASCAL (Turbo Pascal versão 5.0) para a utilização em microcomputadores do tipo IBM-PC.

2. METODOLOGIA ADOTADA

Tradicionalmente, para o cálculo do pH de uma solução aquosa parte-se da definição de ácidos e bases de Arrhenius, sendo então a ionização de um ácido e a de uma base tratadas separadamente¹.

Na abordagem adotada partiu-se da definição de Brönsted-Löwry de que "ácidos e bases são doadores e receptores de prótons, respectivamente". Com isso, pode-se considerar que uma base é uma espécie simples e o seu ácido conjugado, uma "espécie complexa", formada a partir da associação do próton com a "espécie simples"².

Em termos do equilíbrio, tem-se:

$$H^+ + X^- \Leftrightarrow HX$$
 $K_1 = \frac{[HX]}{[H^+][X^-]}$

Neste caso, K₁ é denominada constante "de formação" ou "de estabilidade" do ácido ou "espécie complexa" HX. Para a formação do ácido acético, por exemplo, tem-se:

$$H^+ + CH_3COO^- \Leftrightarrow CH_3COOH$$
 $K = 10^{4,74}$

O logaritmo decimal da constante de formação desse ácido é igual ao seu pKa.

Uma base tanto pode ser um ânion (como OH⁻, acetato, etc.) quanto uma espécie não carregada, como a amônia, as aminas em geral, etc. Mesmo assim, é desnecessário definir-se outra constante para as bases, devendo-se considerar sempre a constante de formação do ácido conjugado correspondente. No caso da amônia, por exemplo, considera-se simplesmente a constante de formação do ácido NH₄⁺, ou seja:

$$H^+ + NH_3 \Leftrightarrow NH_4^+ \qquad K = 10^{9,25}$$

2.1. Ácidos Monopróticos

Conforme esta abordagem, para o cálculo do pH de uma solução contendo uma base ou o seu ácido monoprótico conjugado, deve-se considerar, de início, os equilíbrios que ocorrem simultâneamente no meio aquoso, ou sejam:

• a auto-ionização da água:

$$H_2O \Leftrightarrow H^+ + OH^- \qquad K_w = [H^+][OH^-]$$

o equilíbrio relativo ao par ácido-base

$$H^+ + X^- \Leftrightarrow HX$$
 $K = \frac{[HX]}{[H^+][X^-]}$

Considerando-se então estes dois equilíbrios e o balanço de massas na solução, podem ser definidos os seguintes parâme-

tros fundamentais:

• XT : a concentração analítica total da base X-:

$$XT = [X^{-}] + [HX]$$

$$= [X^{-}] + K[H^{+}][X^{-}]$$

$$XT = [X^{-}](1 + K[H^{+}]) : [X^{-}] = \frac{XT}{1 + K[H^{+}]}$$
 (1)

• HT: a concentração analítica total de ácido:

$$HT = [H^{+}] - [OH^{-}] + [HX]$$

$$= [H^{+}] - \frac{K_{w}}{[H^{+}]} + K \cdot [H^{+}][X^{-}]$$

Substituindo-se [X-] por seu valor dado em (1), resulta:

$$HT = [H^{+}] - \frac{K_{w}}{[H^{+}]} + \frac{XT K [H^{+}]}{1 + K [H^{+}]}$$
(2)

Os valores de HT e XT são definidos pela concentração molar da solução, devendo-se observar ademais que o equilíbrio tanto poderá ser estabelecido após a dissolução da base X^- quanto do ácido HX. Disto resulta:

- Para uma solução do ácido HX, de molaridade C:

$$HT = XT = C (3)$$

- Para uma solução da base X-, de molaridade C:

$$HT = O \quad e \quad XT = C$$
 (4)

Com isto, conclui-se que HT e [H+] são os parâmetros que distinguem as soluções de um ácido e de sua base conjugada X-.

Conhecidos para uma solução, os valores de HT e XT, conforme as equações (3) e (4), a única incógnita da expressão (2) é [H⁺]. Pode-se então definir a equação:

$$f([H^+]) = [H^+] - \frac{K_w}{[H^+]} + \frac{XT \cdot K \cdot [H^+]}{1 + K \cdot [H^+]} - HT = O$$
 (5)

Assim, o problema consiste em encontrar um valor de $[H^+]$ que anule a função $f([H^+])$, ou seja, calcular uma raiz da equação (5). Isto pode ser feito a partir do algoritmo descrito na seção 5.

2.2. Ácidos Polipróticos

A metodologia de cálculo do pH de uma solução de um ácido poliprótico ou de sua base conjugada é idêntica à descrita para o ácido monoprótico. Devem ser consideradas, no entanto, as diferentes etapas relativas ao equilíbrio correspondente à formação desse ácido. Assim, a formação do ácido H_nX , a partir da interação da base X^{n-} com n prótons, será representada por:

$$H^{+} + X^{n-} = HX^{(n-1)-} \qquad K_{1} = \frac{[HX^{(n-1)-}]}{[H^{+}][X^{n-}]}$$

$$H^{+} + HX^{(n-1)-} = H_{2}X^{(n-2)-} \qquad K_{2} = \frac{[H_{2}X^{(n-2)-}]}{[H^{+}][HX^{(n-1)-}]}$$

$$\vdots$$

$$H^{+} + H_{n-1}X^{-} = H_{n}X \qquad K_{n} = \frac{[H_{n}X]}{[H^{+}][H_{n-1}X^{-}]}$$

Onde: $K_1, K_2, ... K_n$ são denominadas constantes consecutivas "de formação (ou de estabilidade) dos ácidos $HX^{(n-1)-}$, $H_2X^{(n-2)-}$, ... H_nX , respectivamente. As constantes cumulativas de formação desses ácidos correspondem a :

$$\beta_{1} = K_{1} = \frac{[HX^{(n-1)-]}}{[H^{+}][X^{n-}]}$$

$$\beta_{2} = K_{1} \cdot K_{2} = \frac{[H_{2}X^{(n-2)-]}}{[H^{+}]^{2}[X^{n-}]}$$

$$\vdots$$

$$\beta_{n} = K_{1} \cdot K_{2} \cdot ... \cdot K_{n} = \frac{[H_{n}X]}{[H]^{n}[X^{n-}]}$$

Tomando-se como exemplo a formação do ácido fosfórico, a partir da base PO₄³⁻, tem-se:

$$H^+ + PO_4^{3-} \Leftrightarrow HPO_4^{2-}$$
, K_1
 $H^+ + HPO_4^{3-} \Leftrightarrow H_2PO_4^-$, K_2
 $H^+ + H_2PO_4^- \Leftrightarrow H_3PO_4$, K_3

Relativamente às constantes de ionização (ou de instabilidade) do ácido H₃PO₄, tem-se portanto:

$$K_1 = \frac{1}{Ka_3}$$
, $K_2 = \frac{1}{Ka_2}$ e $K_3 = \frac{1}{Ka_1}$

Generalizando:

$$logK_i = pKa_{(n+1-i)}$$

Com isto, as constantes cumulativas de formação dos ácidos ou espécies complexas HPO₄²⁻, H₂PO₄⁻ e H₃PO₄ correspondem a:

$$\beta_1 = \frac{1}{Ka_3}$$
, $\beta_2 = \frac{1}{Ka_3Ka_2}$ e $\beta_3 = \frac{1}{Ka_3Ka_2Ka_1}$

Ou em termos de logaritmos:

$$\begin{aligned} \log \beta_1 &= p K a_3 = 11,7 \\ \log \beta_2 &= p K a_2 + p K a_3 = 6,9 + 11,7 = 18,6 \\ \log \beta_3 &= p K a_1 + p K a_2 + p K a_3 = 2,0 + 6,9 + 11,7 = 20,6 \end{aligned}$$

A definição dos parâmetros HT e XT para um ácido H_nX , leva em conta que o equilíbrio de formação desse ácido poliprótico ocorre em meio aquoso. Tem-se portanto:

 A concentração analítica total de base (XT) será dada por:

$$XT = [X^{n-}] + [HX^{(n-1)-}] + [H_2X^{(n-2)-}] +$$

 $+ [H_3X^{(n-3)-}] + ... + [H_nX] =$

$$= [X^{n-}] + \beta_1 \cdot [X^{n-}] \cdot [H^+] + \beta_2 \cdot [X^{n-}] \cdot [H^+]^2 +$$

$$+ \beta_3 \cdot [X^{n-}] \cdot [H^+]^3 + \dots + \beta_n \cdot [X^{n-}] \cdot [H^+]^n$$

$$XT = [X^{n-}] + [X^{n-}] \cdot \sum_{i=1}^{n} \beta_i \cdot [H^+]^i$$

$$[X^{n-}] = \frac{XT}{1 + \sum_{i=1}^{n} \beta_i \cdot [H^+]^i}$$
(6)

• E a concentração analítica total de ácido (HT) por:

$$\begin{split} HT &= [H^+] - [OH^-] + [HX^{(n-1)-}] + 2[H_2X^{(n-2)-}] + \\ &+ 3[H_3X^{(n-3)-}] + ... + n[H_nX] \\ &= [H^+] - [OH^-] + \beta_1[X^{n-}][H^+] + \\ &+ 2\beta_2[X^{n-}][H^+]^2 + 3\beta_3[X^{n-}][H^+]^3 + \\ &... + n\beta_n[X^{n-}][H^+]^n \\ HT &= [H^+] - \frac{K_w}{[H^+]} + [X^{n-}] \cdot \sum_{i=1}^n i\beta_i[H^+]^i \end{split}$$

• Substituindo [Xn-] por seu valor dado em (6), resulta:

$$HT = [H^{+}] - \frac{K_{\mathbf{w}}}{[H^{+}]} + \frac{XT \cdot \sum_{i=1}^{n} i \beta_{i} \cdot [H^{+}]^{i}}{1 + \sum_{i=1}^{n} \beta_{i} \cdot [H^{+}]^{i}}$$
(7)

Os valores de HT e XT dependem da concentração das soluções e do grau de protonação da base X^{n-} , sendo dadas para uma solução de $H_iX^{(n-j)-}$, de molaridade C, por:

$$HT = jC \quad e \quad XT = C$$
 (8)

Nesta expressão, o valor de j pode variar desde zero, quando tratar-se de uma solução da base X^{n-} , até n, quando a solução contiver o ácido H_nX .

Conhecidos para uma solução, os valores de HT e XT de acordo com a expressão (8), pode-se calcular o pH da solução através da determinação da raiz de uma equação. A partir da expressão (7) define-se a equação para ácidos polipróticos:

$$f([H^+]) = [H^+] - \frac{K_w}{[H^+]} + \frac{XT \cdot \sum_{i=1}^{n} i \cdot \beta_i [H^+]^i}{1 + \sum_{i=1}^{n} \beta_i \cdot [H^+]^i}$$
(9)

Mais adiante, na seção 4, é descrito o algoritmo para calcular o pH de uma solução de ácido poliprótico.

2.3. Soluções de sais

Devem ser considerados três tipos diferentes de sais, ou sejam, os formados por ácidos fortes com bases fracas, por ácidos fracos com base fortes e por ácidos fracos com bases também fracas.

Numa solução de um sal formado por ácido forte com base fraca, como o cloreto de amônio, pode-se simplesmente ignorar a presença do ânion desse sal e tratar a solução como contendo apenas o ácido correspondente ao cátion. Há que se considerar apenas a possibilidade de que esse cátion corresponda a um ácido poliprótico e não esteja totalmente protonado. Ou seja, no cálculo de HT deve-se levar em conta o número de prótons nele efetivamente existentes.

De maneira semelhante, numa solução de um sal formado

por ácido fraco com base forte, como um fosfato de metal alcalino, pode-se simplesmente ignorar a presença do cátion desse sal e tratar a solução como contendo apenas a base correspondente ao ânion. De novo, há que se considerar também a possibilidade de que o ânion seja poliprótico e não esteja totalmente desprotonado.

Para uma solução contendo um sal formado por ácido fraco e base também fraca, devem ser considerados tanto o ânion quanto o cátion presentes. Isto corresponde a uma mistura de ácido e base, cuja análise é feita a seguir.

2.4. Misturas de ácidos e/ou bases

O tratamento de uma mistura não apresenta maior dificuldade, devendo-se levar em consideração cada um dos componentes do sistema e lembrar que a concentração hidrogeniônica é comum e, portanto, uniforme.

Assim, para um sistema constituído por m ácidos (ou suas respectivas bases conjugadas) $H_{n_1}X_1$, $H_{n_2}X_2$, ..., H_{n_m} , temse:

 A concentração analítica total de cada uma das bases será dada por:

$$XT_{1} = [X_{1}] + [X_{1}] \sum_{i=1}^{n_{1}} \beta_{1,i} \cdot [H^{+}]^{i} \text{ ou}$$

$$[X_{1}] = \frac{XT_{1}}{1 + \sum_{i=1}^{n_{1}} \beta_{1,i} \cdot [H^{+}]^{i}}$$

$$XT_{2} = [X_{2}] + [X_{2}] \sum_{i=1}^{n_{2}} \beta_{2,i} \cdot [H^{+}]^{i} \text{ ou}$$

$$[X_{2}] = \frac{XT_{2}}{1 + \sum_{i=1}^{n_{2}} \beta_{2,i} \cdot [H^{+}]^{i}}$$

$$\vdots$$

$$XT_{m} = [X_{m}] + [X_{m}] \cdot \sum_{i=1}^{n_{m}} \beta_{m,i} \cdot [H^{+}]^{i} \text{ ou}$$

$$[X_{m}] = \frac{XT_{m}}{1 + \sum_{i=1}^{n_{m}} \beta_{m,i} \cdot [H^{+}]^{i}}$$

Já a concentração analítica total de ácidos será dada por :

$$HT = [H^{+}] - \frac{K_{w}}{[H^{+}]} + [X_{1}] \cdot \sum_{i=1}^{n_{1}} i \cdot \beta_{1,i} \cdot [H^{+}]^{i} +$$

$$+ [X_{2}] \cdot \sum_{i=1}^{n_{2}} i \beta_{2,i} [H^{+}]^{i} + ...$$

$$+ [X_{m}] \cdot \sum_{i=1}^{n_{m}} i \cdot \beta_{m,i} \cdot [H^{+}]^{i}$$

Substituindo-se nesta equação os valores de [X₁] para mistura de ácidos e/ou bases:

$$f([H^{+}]) = [H^{+}] - \frac{K_{w}}{[H^{+}]} + \frac{\sum_{j=1}^{m} \sum_{i=1}^{j} i_{i} \cdot \beta_{j,i} \cdot [H^{+}] i}{1 + \sum_{j=1}^{m} j_{\beta_{j,j}} \cdot [H^{+}] i} - HT = 0$$
 (10)

Portanto, da mesma forma que anteriormente feito, uma vez definidos os valores de XT_1 , XT_2 , ..., XT_m e HT, conforme a concentração da solução e o número de prótons efetivamente presentes em cada caso, pode-se determinar a $[H^+]$ através do cálculo da raiz da equação (10).

3. SIMULAÇÃO DE CURVAS DE TITULAÇÃO

Basicamente, para simular a curva de titulação, torna-se necessário calcular em cada ponto K da titulação, os valores de HT e XT_{j} para serem utilizados na equação (10). Na solução sendo titulada, a concentração analítica total de ácido (HT) é função de sua concentração inicial (HT_o), do volume inicial (V_o), do volume V_k e da concentração [T] do titulante que se supõe ter sido adicionado no ponto k.

Por isto HT é dado por:

$$HT = \frac{V_o \cdot HT_o + s \cdot V_k \cdot [T]}{V_o + V_k}$$
 (11)

onde:

$$s = \begin{cases} +1: \text{ se o titulante \'e \'acido forte} \\ -1: \text{ se o titulante \'e base forte} \end{cases}$$

A concentração analítica total da j-ésima base (XT_j) é função apenas de sua concentração inicial $(XT_{o,j})$ e do volume V_{ν} do titulante adicionado no ponto k. Assim:

$$XT_{j} = \frac{V_{o} \cdot XT_{o,j}}{V_{o} + V_{k}}$$
 (12)

Para se traçar a curva de titulação ácido-base necessita-se dos pares (V_k, pH) . O mais natural seria aplicar as equações (11) e (12) à equação (10) e se obter

$$pH = f(V_k)$$

ou seja, em cada ponto k, dado o volume V_k calcula-se o pH através da equação (10). Deste modo, seria calculada a raiz de uma equação para cada ponto k da titulação, o que demandaria um grande esforço computacional.

Por outro lado, é possível rearranjar-se a equação (10) de modo que a partir de um dado pH seja possível calcular V, ou seja^{3,4}:

$$V_k = f(pH)$$

Para isto, os valores de HT e XT_j , dados pelas equações (11) e (12), são substituídos na equação (10), resultando em:

$$f([H^+]) = [H^+] - \frac{K_w}{[H^+]} + \frac{V_o D([H^+])}{V_o + V_k} - \frac{V_o H T_o + s \cdot V_k [T]}{V_o + V_k} = 0$$
onde:
$$D([H^+]) = \sum_{j=1}^{m} X T_{o,j} \cdot \frac{\sum_{i=1}^{n} j_i \cdot \beta_{j,i} \cdot [H^+]}{1 + \sum_{i=1}^{n} \beta_{j,i} \cdot [H^+]} \stackrel{i}{\longrightarrow} \frac{1}{i}$$

Multiplicando-se por $(V_0 + V_k)$, a função f $([H^+])$ torna-se igual a:

$$(V_o + V_k) \cdot \left[[H^+] - \frac{K_w}{[H^+]} \right] + V_o \cdot D ([H^+]) - (V_o \cdot HT_o) + s \cdot V_k \cdot [T]) = 0$$

Colocando-se do lado esquerdo da igualdade os valores com $V_{\mathbf{k}}$, tem-se:

$$\begin{aligned} & V_{k} \cdot \left[[H^{+}] - \frac{K_{w}}{[H^{+}]} \right] - s \cdot V_{k} \cdot [T] = V_{o} \cdot \left[[H^{+}] - \frac{K_{w}}{[H^{+}]} - \right] \\ & - V_{o} \cdot D([H^{+}]) + V_{o} \cdot HT_{o} \end{aligned}$$

ou

$$V_{k} = \frac{V_{o} \cdot \left[\frac{K_{w}}{[H^{+}]} - [H^{+}] - D([H^{+}]) + HT_{o} \right]}{\left[[H^{+}] - \frac{K_{w}}{[H^{+}]} - s \cdot [T] \right]}$$
(13)

Portanto, para simular uma curva de titulação ácido-base, primeiro são calculados o p $H_{inicial}$ e o p H_{final} da solução. Isto é feito através do cálculo da raiz da equação (10).

Para o cálculo do p $H_{inicial}$, o volume de titulante é nulo ($V_k = O$) nas expressões (11) e (12). Já para o cálculo do p H_{final} da solução, o volume final de titulante é tomado como correspondente a 25% além do volume de equivalência (V_{eq}), calculado como se todos os prótons estivessem neutralizados. Com isto, os valores da concentração analítica total de ácido (HT) e da concentração analítica total da j-ésima base (XT_j), na equação (10), ficam :

$$HT = \frac{V_0 \cdot HT_0 + s \cdot 1,25 \cdot V_{eq} > [T]}{V_0 + 1,25 \cdot V_{eq}}$$

$$XT_{j} = \frac{V_{o} \cdot XT_{o,j}}{V_{o} + 1,25 \cdot V_{eq}}$$

Após a determinação dos limites de pH, os pontos intermediários da curva de titulação são obtidos diretamente pela equação (13). Nela o incremento de pH, para obtenção de [H⁺], é definido segundo a expressão:

$$\triangle pH = \frac{pH_{final} - pH_{inicial}}{N^{\circ} \text{ de Pontos Deseiados}}$$

Nestes cálculos intermediários o tempo computacional é reduzido substancialmente, uma vez que é desnecessário o cálculo de raiz de uma equação.

4. ALGORITMO

Conforme já descrito anteriormente, o problema de calcular o pH de uma solução consiste em encontrar uma raiz da equação $f([H^+]) = O$.

A fim de exemplificar como isto é feito, será mostrado, a seguir, um algoritmo para calcular o pH de uma solução de ácido poliprótico (H_nX), obtido através da equação 9.

Dentre os métodos numéricos experimentados para o cálculo da raiz dessa equação, o que apresentou melhor desempenho foi o método Pégaso^{5,6}.

Algoritmo

Objetivo:

Calcular o pH de uma solução aquosa de ácido poliprótico

Variáveis de entrada:

Beta: vetor com os valores das constantes cumulativas de formação do ácido

N : número de hidrogênios ionizáveis do ácido H_nX

Xtot : concentração molar do ácido H_nX

Variáveis de saída:

pH: valor do pH da solução

Erro: condição de erro

Erro = falso: não há erro

Erro = verdadeiro: processo não convergiu

```
Subprogramas utilizados:
         subrotina CalculapH
         funcão F
  }
  declare Beta, N, pH, Xtot: numérico
  declare Erro: lógico
   {leitura dos dados}
   leia (N, Beta, Xtot)
   {chamada da subrotina CalculapH }
   CalculapH (Beta, Erro, N, pH, Xtot)
   se Erro então
       escreva ('Processo não convergiu')
   .
senão
       escreva ('pH da solução = ', pH)
fim algoritmo
subrotina CalculapH (Beta, Erro, N, pH, Xtot)
  declare Beta [1:N], N, pH, Xtot: numérico
  declare Erro: lógico
  declare A, B, Dif, Iter, Fa, Fb, Fx, X: numérico
  declare L1, L2: lógico
          \Leftarrow 0
  Fa \in F (Beta, N, A, Xtot)
  B ¢ 14
  Fb \in F (Beta, N, B, Xtot)
  X \in B
  repita-
     Dif \Leftarrow Fb * (B - A) / (Fb - Fa)
     X
          \Leftarrow X - Dif
     Fx \in F (Beta, N, X, Xtot)
     se (Fb * Fx < 0) então
          A \Leftarrow B
         Fa ← Fb
     senão
         Fa \Leftarrow Fa * Fb / (Fb + Fx)
     fim se
     В
                ← X
     Fb
                L1 \in abs (Dif) \le 10^{-3}) e (abs(Fx) \le 10^{-9})
     L2 \Leftarrow Iter = 30
  até L1 ou L2
  se L1 ou não (L2) então
     pH ← ≒
     senão
     pH \leftarrow -7
    fim se
```

função numérica F (Beta, N, pH, Xtot) $\cdot \beta_i \cdot (H)^i$ $\{F = H - {^K}_w +$ -HT $\beta_i \cdot (H)^i$ declare Beta [1:N], N, pH, Xtot: numérico declare I, Kw, H, Soma1, Soma2: numérico **←** 10-pH Κw **€** 10⁻¹⁴ Soma1 ← N * Beta [N] Soma2 ← Beta [N] para I de (N - 1) até 1 faça Soma $1 \in \text{Somal} * H + I * \text{Beta}[I]$ $Soma2 \Leftarrow Soma2 * H + 1$ $F \in H - Kw / H + Xtot * (Soma1 / Soma2 - N)$ fim para Soma $1 \in \text{Soma2} * H + 1$

fim função

Para se calcular o pH de uma mistura de ácidos e/ou bases (equação 10), o algoritmo acima pode ser facilmente ampliado.

5. O SISTEMA DE PROGRAMAÇÃO TITULAR

 $F \Leftarrow H - Kw / H + Xtot * (Soma 1 / Soma2 - N)$

O programa TITULAR, fundamentado nas metodologias de cálculo do pH e simulação de curvas de titulação ácido-base descritas anteriormente, foi desenvolvido na linguagem PASCAL (utilizando Turbo Pascal versão 5.0)⁷ para microcomputador compatível com o IBM-PC, sob sistema operacional MS-DOS (versão 3.3).

Sendo um sistema de uso simples, o TITULAR é dedicado a alunos, professores e técnicos que trabalhem em ensino ou pesquisa com equilíbrio ácido-base em meio aquoso. Este programa foi projetado para atender a estes usuários, mesmo que sejam leigos em computação.

A execução do TITULAR é realizada pelo usuário de modo totalmente interativo com o programa, seja por meio de menus autoexplicativos ou através de mensagens que são enviadas ao usuário, informando-o sobre os comandos disponíveis, ou auxiliando-o em caso de erro.

Neste sistema, toda entrada de dados é feita considerando todos os valores como literais. Procedimentos em um nível mais alto fazem a conversão destes valores literais para valores numéricos inteiros ou reais. Isto torna o sistema imune aos erros ocasionados por dados incorretos. Estes procedimentos realizam testes de consistência no dado que está sendo lido, e caso haja erro, uma mensagem é exibida no campo de mensagens, na última linha de vídeo.

As opções oferecidas nos vários módulos facilitam a utilização dos recursos do programa e a comunicação interativa facilita a escolha das opções pelo usuário.

O TITULAR é constituído por dois grandes módulos básicos, um para calcular o pH de uma solução e outro para simular a sua titulação por um ácido ou base forte.

fim subrotina { CalculapH}

5.1. Módulo Cálculo de pH

No módulo, "cálculo de pH", o TITULAR permite calcular o pH de soluções com:

- (1) um ÁCIDO
- (2) MISTURA de ÁCIDOS
- (3) uma BASE
- (4) MISTURA de BASES
- (5) MISTURA de ÁCIDOS e BASES
- (6) um SAL
- (7) MISTURA de SAIS

Definida uma opção, basta que o usuário forneça para cada ácido ou base, o valor de n (número de prótons de prótons do ácido H_nX , ou do ácido conjugado, quando tratar-se de uma base). A seguir, deverá ser indicado se o ácido ou base é fraco e, em caso afirmativo, os valores dos seus pKa's.

Também deverá ser fornecida a concentração molar (C) da solução e o número de prótons ligados à base (tratando-se de sais). Além disso, se a solução contiver uma mistura de espécies, deverá ser fornecida o número de ácidos ou bases presentes no meio.

O programa então calcula XT (igual a C). HT (igual a jC, onde j é o número de prótons ligados à base Xⁿ⁻) e o valor do pH da solução. No caso de misturas, o programa calcula inicialmente os valores de HT e XT, para cada componente e, em seguida, adiciona os valores de HT, para finalmente calcular o pH da solução.

Após os cálculos, são exibidos no vídeo os dados relativos à solução e o pH calculado. Se necessário, estes dados e o resultado podem ser impressos.

5.2. Módulo Simular Curvas de Titulação

Neste módulo, o TITULAR oferece as mesmas opções disponíveis no cálculo de pH, sendo também utilizada a mesma estrutura para a entrada dos dados relativos à solução cuja titulação será simulada. Estes dados deverão conter as mesmas informações já descritas na seção anterior, além do volume total da solução a ser titulada e a concentração molar do titulante.

À medida que o TITULAR calcula os valores dos pares (volume adicionado de titulante, pH), é mostrada no vídeo a curva de titulação simulada, até um volume de titulante que seja 25% maior que o volume de equivalência, calculado com base na concentração molar total de prótons (HT).

Após o cálculo e a exibição de cada curva de titulação as seguintes opções são fornecidas ao usuário: marcar curvas, combinar gráficos, dados, imprimir gráfico, ampliar a escala (zoom) e sair.

Através da opção *imprimir*, o gráfico em exibição poderá ser impresso em escala reduzida ou em tamanho natural. Se necessário, várias curvas de titulação poderão ser superpostas e exibidas simultaneamente, com o uso da opção *combinar* gráficos. Além disso, as curvas exibidas poderão ser identificadas por meio de caracteres, através do procedimento *marcar* curvas.

A escala padrão do pH no gráfico vai de 0 (zero) até 14 (quatorze). A opção zoom permite que se faça alterações nesta escala, de modo que se tenha um maior detalhamento de uma determinada região ou de toda a curva de titulação simulada.

Se o usuário optar pelo procedimento dados, um novo menu é exibido, com as seguintes opções:

- (E)xibir todos os dados no vídeo
- (I)mprimir todos os dados
- (O)bter o pH para um dado volume de titulante
- (C)alcular o volume para um dado pH
- (S)air do módulo

Estas opções fornecidas neste novo menu se referem à última curva de titulação simulada pelo TITULAR. O usuário poderá tanto exibir todos os dados e resultados no vídeo, quanto imprimí-los.

Além disto, valores pontuais da curva de titulação podem ser facilmente obtidos. Conforme desejado, pode-se calcular o pH resultante da adição de um certo volume de titulante ao meio ou mesmo realizar a operação inversa, calcular o volume de titulante que deverá ser adicionado de modo que se tenha um certo valor de pH na solução final.

Finalmente, se o usuário optar neste menu por "sair do módulo", ele retornará à tela gráfica, onde estão exibidas cada uma das curvas de titulação calculadas.

Está disponível também neste módulo "Simular Curvas de Titulação", nas opções "(1) curva de titulação de UM ÁCIDO" e "(3) curva de titulação de UMA BASE", através de um novo submenu, a possibilidade de se exibir, simultaneamente à curva de titulação da solução, a variação da concentração das diversas espécies do sistema ácido-base.

Escolhida a opção "curva de titulação e frações molares", presente no submenu das opções (1) e (3) deste módulo, o TI-TULAR exibirá, além da curva de titulação convencional, curvas representativas da variação das frações molares das espécies presentes no sistema ácido-base, em função da variação do pH e da adição de titulante. Tem-se então uma radiografia do que acontece no meio durante o transcorrer da titulação. Escolhendo a opção "simular a titulação", o TITU-LAR exibirá ao usuário somente a curva de titulação convencional

6. EXEMPLOS DE APLICAÇÕES

O programa TITULAR pode ser utilizado para diversas aplicações, dependendo do tipo de problema em estudo. Alguns exemplos foram selecionados, de modo a mostrar as potencialidades do programa.

Para calcular, por exemplo, o pH de uma solução contendo H₂S 0,01 M, H₂CO₃ 0,002 M e acetato de sódio 0,01 M, basta utilizar a opção (5): MISTURA de ÁCIDOS e BASES do módulo "calcular o pH", quando devem ser fornecidos os seguintes dados de entrada:

ESPÉCIE	CONC.	pKa ₁	pKa ₂	
10. Ácido	0,010	7,05	12,92	
20. Ácido	0,002	6,37	10,32	
1A. Base	0,010	4,76	****	

O resultado obtido é: pH da solução = 5,768

Além do pH da solução resultante, o TITULAR fornece ainda os valores de concentração das espécies presentes no meio:

$$\begin{cases} H_2S = 0.00951 \\ HS^{-} = 0.00049 \\ S^{2-} = 3.5E-11 \end{cases}$$

$$\begin{aligned} H_2CO_3 = 0.00161 \\ HCO_{\overline{3}} = 0.00039 \\ CO_{\overline{3}}^2 = 1.1E-8 \end{aligned}$$

$$\begin{aligned} CH_2COOH_2 = 0.000876 \\ CH_2COO = 0.009124 \end{aligned}$$

Um outro exemplo é calcular o pH de uma mistura contendo acetato de sódio $0.2\,$ M, $Na_2SO_3\,$ 0.1 M, $NH_4Cl\,$ 0.1 M e $NaNH_4HPO_4\,$ 0.05 M. Neste caso, utilizando-se a opção (7): MISTURA de SAIS, do TITULAR, devem ser fornecidos os seguintes dados de entrada:

	ESPÉCIE	CONC	. pKa ₁	pKa ₂	pKa ₃
1º sal	Acetato	0,20	4,76	****	****
2º sal	Sulfito	0,10	1,89	7,20	****
3º sal	Amônio	0,10	9,25	****	****
4º sal	Fosfato	0,05	2,00	6,90	11,70
	Amônio	0,05	9,25	****	****

O resultado do cálculo pelo programa é: pH da solução = 8.185.

Para exemplificar a utilização do módulo "simular curvas de titulação", foi simulada a titulação de um ácido forte, de um ácido fraco e de uma mistura destes, conforme mostra a figura 1.

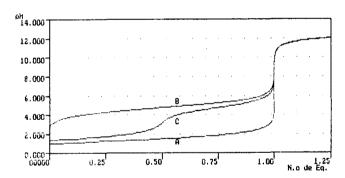


Figura 1. Curvas de titulação por NaOH 0,1 M de : 10 ml de HCl 0,1 M (cuva A), 10 ml de ácido acético 0,1 M (curva B) e 10 ml da mistura HCl 0,05 M e ácido acético 0,05 M (curva C).

Outro gráfico com curvas de titulação superpostas é exibido na figura 2. Neste gráfico estão as curvas de titulação de um grupo de ácidos dipróticos:

Ácido	pKa ₁	pKa ₂
Sulfúrico	-3,0	1,8
Oxálico	1.1	4,0
Malêico	1,8	5,9
Carbônico	6,3	10,1

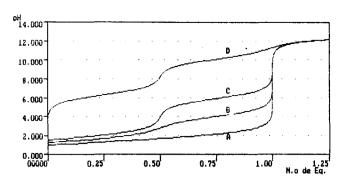


Figura 2. Titulação de ácidos diprótico: ácido sulfúrico (A), ácido oxálico (B), ácido malêico (C) e ácido carbônico (D). As soluções (25 ml, 0,1 M) foram tituladas com base forte 0,1 M.

Deve-se observar nesta figura que na titulação do ácido sulfúrico não existe qualquer inflexão correspondente ao primeiro próton, visto que o HSO_4 é um ácido relativamente forte. Na titulação dos demais ácidos está evidenciada a neutralização do primeiro próton, sendo que a inflexão correspondente é tanto mais pronunciada quanto maior a diferença entre pKa_1 e pKa_2 .

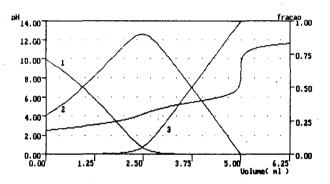


Figura 3. Titulação de ácido ftálico 0,01 M com base 0,1 M. As curvas 1, 2 e 3 representam, respectivamente, a variação das frações molares das espécies H₇Ft, HFt- e Ft²-.

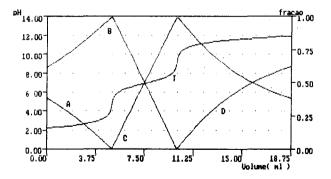


Figura 4. Titulação de 50 ml de H₃PO₄0,01 M com base forte 0,1 M.As frações molares (valores à direita) das espécies H₃PO₄ (A), H₂PO₄⁻ (B), HPO₄²- (C) e PO₄³- (D) estão exibidas neste gráfico. A curva T indica a variação do pH da solução (valores à esquerda).

Como exemplo da utilização da opção "curva de titulação e frações molares", foi simulada a titulação de uma solução de

ácido ftálico 0,01 M (pKa₁ = 2,92 e pKa₂ = 5,41) com base forte 0,1 M (figura 3). As curvas 1, 2 e 3 representam a variação das frações molares das espécies H_2Ft , HFt^- e Ft^2 -respectivamente, durante o transcorrer da titulação. Nesta figura, após a adição de 15 ml de titulante observa-se um pH da solução igual a 5,25 e uma fração molar de HFt^- e Ft^2 - igual a 0.5.

Outro exemplo desta opção ("curva de titulação e frações molares") é a titulação de ácido fosfórico com base forte (figura 4). A variação das frações molares das espécies $\rm H_3PO_4$, $\rm H_2PO_4^-$, $\rm HPO_4^{2-}$ e $\rm PO_4^{3-}$ é mostrada nas curvas A, B, C e D, respectivamente.

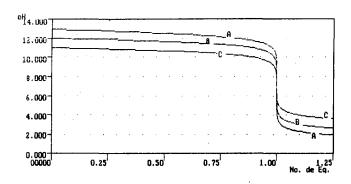
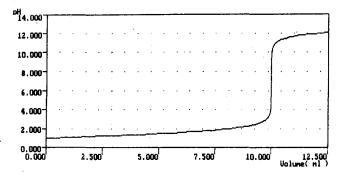



Figura 5. Titulação com ácido forte 0,1 M de 50 ml de soluções de NaOH 0,1 M (A), 0,01 M (B) e 0,001 M (C).

Na figura 5 estão exibidas as curvas de titulação de soluções de base forte, em diferentes concentrações. Estas soluções foram tituladas com solução de ácido forte.

Através da opção zoom (ampliar a escala), a região próxima ao ponto de equivalência de uma titulação poderá ser mais facilmente analisada, como mostra a figura 6, a seguir.

No gráfico superior desta figura está exibido a curva de titulação de um ácido forte e, no gráfico inferior, é mostrada uma ampliação da escala do pH.

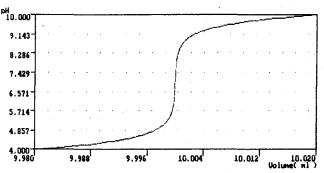


Figura 6. Ampliação da região próxima ao ponto de equivalência da titulação de HCl 0,1 M com NaOH 0,1 M.

7. COMO OBTER CÓPIA DO PROGRAMA TITULAR

Cópias do programa TITULAR podem ser obtidas com Eucler B. Paniago no Departamento de Química da UFMG.

REFERÊNCIAS

- 1. Russel, J.B.; "Química Geral", Mc Graw-Hill, São Paulo, pag. 391, (1982).
- Rossotti, H.; "The Study of Ionic Equilibria", Longman, London, pag. 36, (1978).
- 3. Willis, C.J.; J. Chem. Ed., (1981), 58, 659.
- 4. Moura, D.R. de, Campos, Filho, F.F.; Quánica Nova, (1988), 11, 182.
- 5. Dowell, M., Jarratt, P.; BIT, (1972), 12, 503.
- Barroso, L.C., Campos, Filho, F.F., et al., "Cálculo Numérico", 2 ed., Harbra, São Paulo, (1987).
- Borland, International Inc., "Turbo Pascal Reference Guide", version 5.0, USA, (1988).
- Ringbom, A., "Complexation in Analytical Chemistry", Interscience Publishers, New York, pag. 166, (1963).